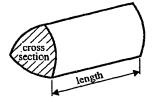

ST EDWARD'S OXFORD

Lower Sixth Entrance Assessment

November 2013

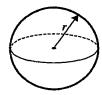
Mathematics

1 hour

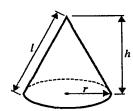

Candidate Name:

Instructions

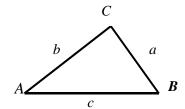
- There are 80 marks available
- Write all answers, including your workings, in this booklet
- Calculators are allowed
- Where answers are not exact, they should be given to three significant figures unless otherwise specified


You may use the following formulae:

Volume of prism = area of cross section \times length


Volume of sphere =
$$\frac{4}{3}\pi r^3$$

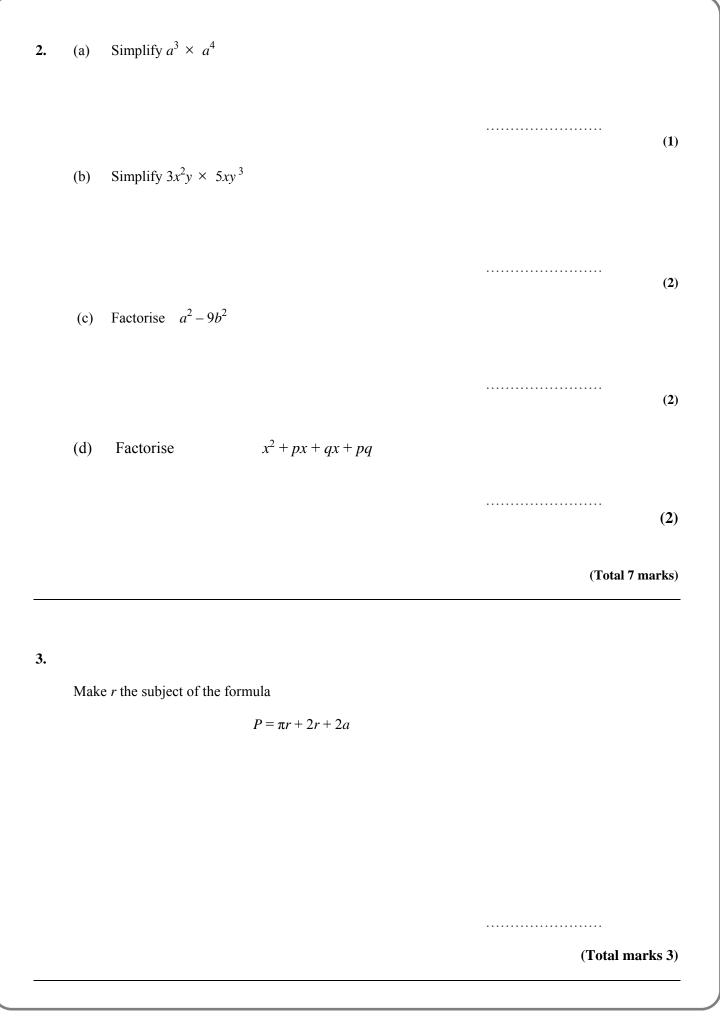
Surface area of sphere = $4\pi r^2$

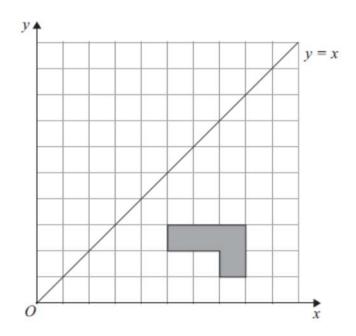

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone = πrl

In any triangle ABC

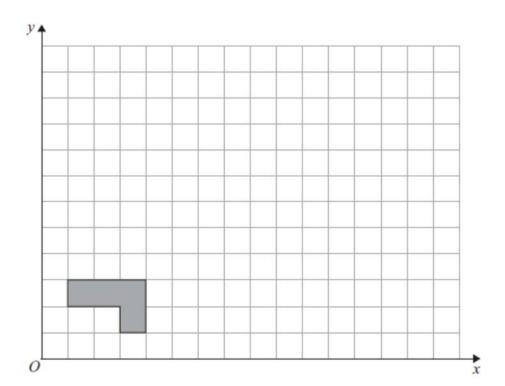
Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$


Cosine Rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$


Area of triangle =
$$\frac{1}{2}ab\sin C$$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
 where $a \ne 0$, are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$


		(x-1)-2(2x-3)	d simplify	Expand an	(a)	1.
(2		$y^2 + y$		Factorise	(b)	
(1			$6x^2 - x - 2$	Factorise	(c)	
(2 al 5 marks	(Total					
al			$6x^2 - x - 2$	Factorise	(c)	

(a) Reflect the shaded shape in the line y = x.

(2)

(b) On the grid, enlarge the shaded shape by a scale factor of 3, centre O.

(3)

(Total 5 marks)

5.
$$-3 < k \le 2$$

k is an integer.

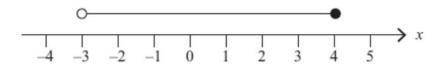
(a) Write down all the possible values of k.

.....

(2)

(b) Solve the inequality $\frac{2x}{3} < 10$

.....


(2)

(d) On the number line below, show the inequality -2 < y < 3

(1)

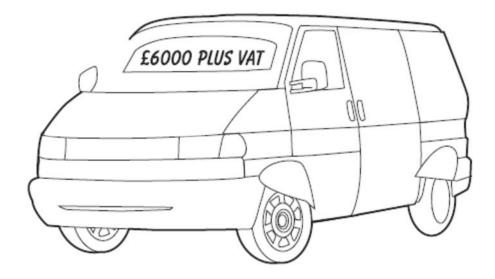
(e) Here is an inequality, in x, shown on a number line.

Write down the inequality.

.....

(2)

(Total 7 marks)


(a) In a sale the normal price of a book is reduced by 10%. The sale price of the book is £4.86 Calculate the normal price of the book.

•																					
٥.																					

(3)

(b) Lizzie bought a van.

The total cost of the van was £6000 **plus** VAT at $17\frac{1}{2}$ %.

Lizzie paid £3000 when she got the van.

She paid the rest of the total cost of the van in 10 equal monthly payments.

Work out the amount of each monthly payment.

£																
a-																٠

(6)

(Total 9 marks)

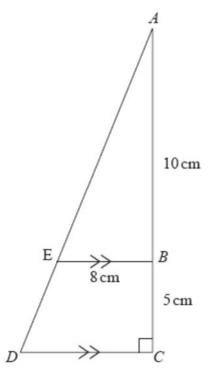
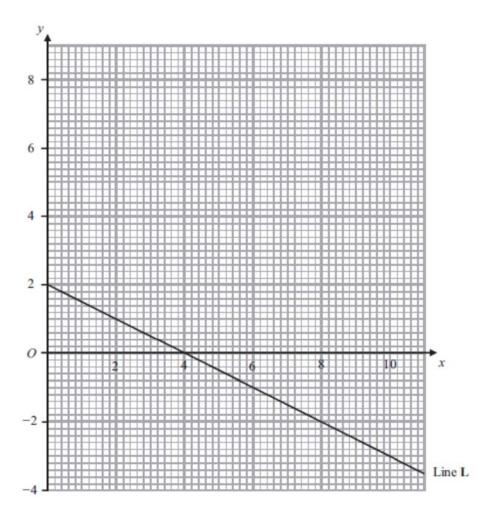


Diagram NOT accurately drawn

ABC and AED are straight lines. EB is parallel to DC. Angle $ACD = 90^{\circ}$.

AB = 10 cm. BC = 5 cm. EB = 8 cm.

(a) Work out the length of DC.


.....cm (2)

(b) Work out the area of the trapezium *EBCD*.

 $.....cm^2$

(2)

(Total 4 marks)

Line \mathbf{L} is drawn on the grid.

(a) Work out the gradient of Line L.

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

(2)

Another line, Line M, is parallel to Line L and passes through the point (6, 2).

(b) Find an equation for Line M.

.....

(2)

9

(Total 4 marks)

9. (a) Show that
$$27^{-\frac{2}{3}} = \frac{1}{9}$$

(3)

(b) Given that $\frac{8-\sqrt{18}}{\sqrt{2}} = a+b\sqrt{2}$, where a and b are integers,

find the value of a and the value of b.

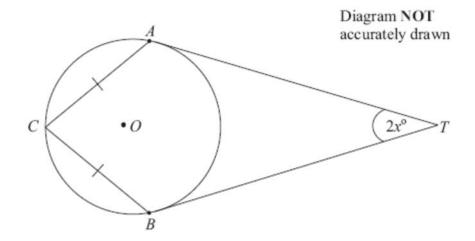
(3)

(c) Write as a single fraction in its simplest form $\frac{2}{x-4} - \frac{1}{x+3}$

(3)

(Total 8 marks)

(a) Show that $\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$.


(2)

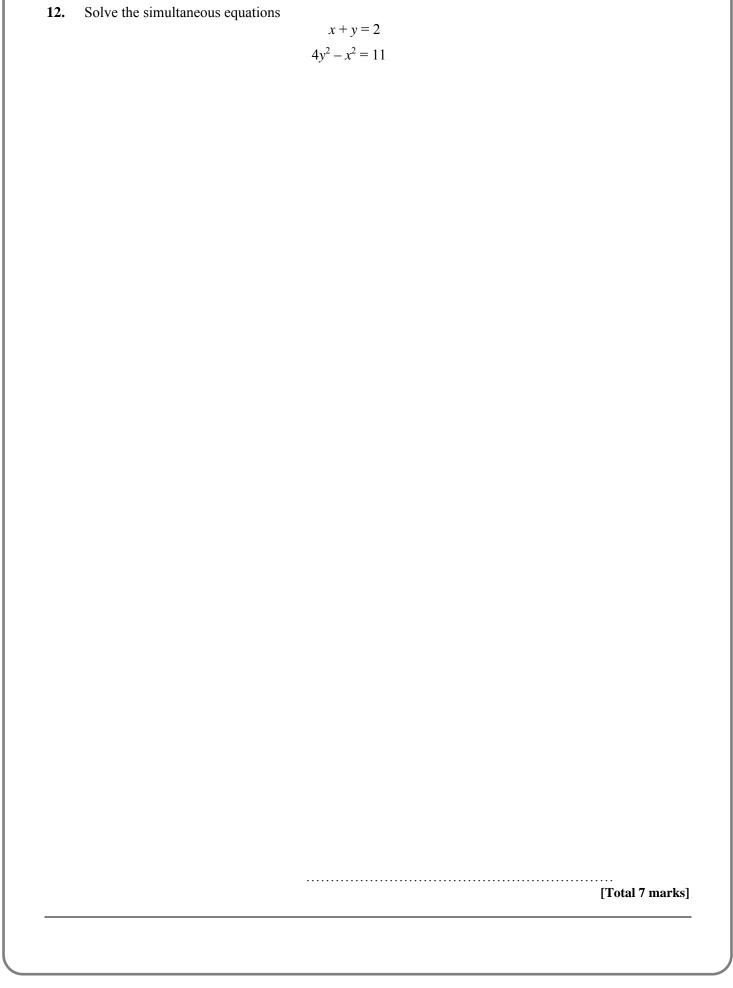
(b) Show that $\frac{2}{5} \div \frac{3}{10} = 1\frac{1}{3}$

.....

(3)

(Total 5 marks)

A, B and C are points on the circumference of the circle, centre O.


TA and TB are tangents to the circle.

$$CA = CB$$
.

Angle
$$ATB = 2x^{\circ}$$
.

Show that angle $ACB = (90 - x)^{\circ}$.

(Total 5 marks)

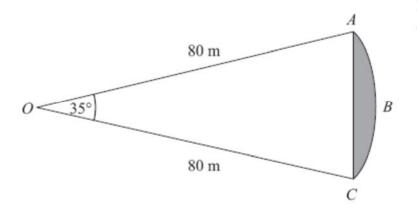


Diagram NOT accurately drawn

ABC is an arc of a circle centre O with radius 80 m.

AC is a chord of the circle.

Angle $AOC = 35^{\circ}$.

Calculate the area of the shaded region.

Give your answer correct to 3 significant figures.

 $..... m^2$

(Total 5 marks)

Solve
$$\frac{5(2x+1)^2}{4x+5} = 5x - 1$$

.....

(Total 5 marks)

This question is from a UKMT Challenge paper, and is intended to be difficult. Please only attempt it if you have finished questions 1 to 14.

15. Two numbers x and y are such that x + y = 20 and $\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$. Showing full working, find the value of $x^2y + xy^2$.

.....

END OF TEST

[4]