ST EDWARD'S

OXFORD

16+ ENTRANCE EXAMINATION

For entry in

September 2018

Mathematics

Time: 1 hour

Candidates Name:

Instructions to Candidates

- 65 Marks
- Time allowed 1 Hour
- Calculators are allowed
- Write all answers, including your workings, in this booklet

Area of triangle = $\frac{1}{2}ab\sin C$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The diagram shows a right-angled triangle *ABC*. AC = 12.6 m. Angle $CAB = 41^{\circ}$ Angle $ABC = 90^{\circ}$

Find the length of the side *AB*. Give your answer correct to 3 significant figures.

..... m (Total 3 marks)

1.

- **2.** A spaceship travelled for 6×10^2 hours at a speed of 8×10^4 km/h.
 - (a) Calculate the distance travelled by the spaceship. Give your answer in standard form.

..... km

(3)

One month an aircraft travelled 2×10^5 km. The next month the aircraft travelled 3×10^4 km.

(b) Calculate the total distance travelled by the aircraft in the two months. Give your answer as an ordinary number.

..... km

(2) (Total 5 marks) 3. This table shows some expressions. The letters *a*, *b*, *c*, and *d* represent lengths. π and 4 are numbers that have no dimensions. Three of the expressions could represent volumes.

Tick the boxes underneath the three expressions which could represent volumes.

$rac{abc}{d}$	$4\pi a^3$	$4a^2$	$\pi a^3 + bd$	(a+b)cd	$\pi(c^2+d^2)$	$4ad^2$
	1	I	1	I	I	(Total 3 m

4.

(a) On the grid, rotate triangle A 180° about *O*.Label your new triangle B.

(b) On the grid, enlarge triangle **A** by scale factor $\frac{1}{2}$, centre *O*. Label your new triangle **C**.

(3) (Total 5 marks)

(2)

5.	Con	vert the recurring decimal 0.29 to a fraction.	
			(Total 2 marks)
6.	(a)	$-2 < x \le 1$	
		x is an integer.	
		Write down all the possible values of <i>x</i> .	
			(2)
	(b)	$-2 < x \le 1$ $y > -2$ $y < x + 1$	
		x and y are integers.	
		On the grid, mark with a cross (\bigstar), each of the six point	nts which satisfies all these
		3 inequalities.	
		4-	
		3-	
		-5 -4 -3 -2 -1 0 1 2	→ x 3 4 5
		-1-	
		-2-	
			(3) (Total 5 marks)

7.	(a)	Solve $6x + 2 = 4(x - 7)$	
			<i>x</i> =(2)
	(b)	(i) Factorise $x^2 - 23x + 42$	
		(ii) Hence solve $x^2 - 23x + 42 = 0$	
	(c)	Factorise $(x+y)^2 - 3(x+y)$	(3)
			 (1) (Total 9 marks)

The diagram shows a trapezium.

The measurements on the diagram are in centimetres. The lengths of the parallel sides are x cm and 20 cm. The height of the trapezium is 2x cm.

The area of the trapezium is 400 cm^2 .

(a) Show that

$$x^2 + 20x = 400$$

(b) Find the value of *x*.Give your answer correct to 3 decimal places.

(3) (Total 5 marks)

8.

9. The fraction, p, of an adult's dose of medicine which should be given to a child who weighs w kg is given by the formula

$$p = \frac{3w + 20}{200}$$

(a) Use the formula $p = \frac{3w + 20}{200}$ to find the weight of a child whose dose is the same as an adult's dose.

(b) Make *w* the subject of the formula
$$p = \frac{3w + 20}{200}$$

A =

..... kg

(3)

(3)

$$\frac{3w+20}{200} = \frac{A}{A+12}$$

(c) Express A in terms of w.

	(4)
(Total 1	0 marks)

10. Solve the equation

$$\frac{7}{x+2} + \frac{1}{x-1} = 4$$

(Total 7 marks)

X is the point on FM such that FX : XM = 4 : 1.

(d) Prove that *C*, *X* and *E* lie on the same straight line.

(3) (Total 7 marks)

12. The depth, *D* metres, of the water at the end of a jetty in the afternoon can be modelled by this formula

$$D = 5.5 + A \sin 30(t-k)^{\circ}$$

Where *t* hours is the number of hours after midday, *A* and *k* are constants.

Yesterday the low tide was at 3 p.m. The depth of water at low tide was 3.5 m.

Find the value of *A* and *k*.

A =

k =

(Total 4 marks)

END OF TEST