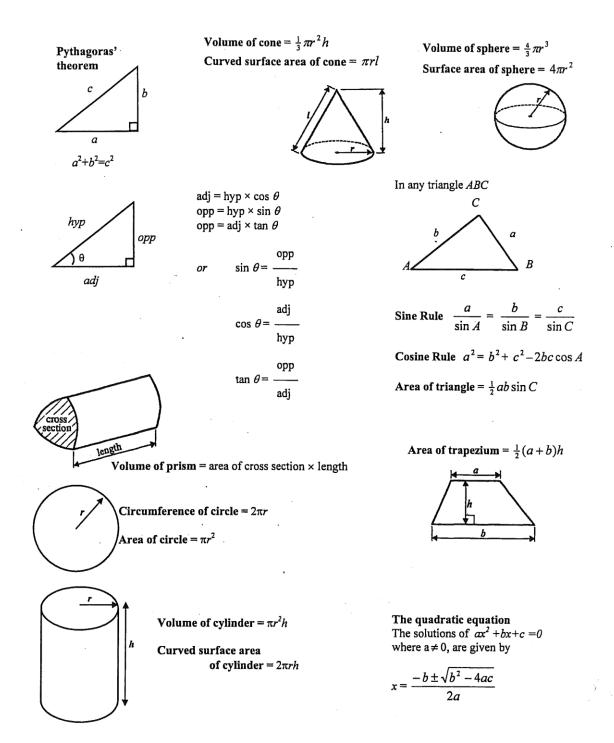



# TONBRIDGE School

Test for Entrance into Year 12 in September 2015

## Maths


Name:....

School:....

Answer **all** questions in Section A and **either** question 12 or 13 in Section B. Do all your workings in the spaces provided.

> Marks for Section A: 60 Marks for Section B: 20

Time allowed : 75 minutes. You are allowed to use a calculator in this exam. <u>A list of useful formulae will be found on page 2.</u>



### Section A : Answer all questions in this section

1. Solve the simultaneous equations

$$5x + 4y = 3$$
$$x - 2y = 2$$

x = ..... y = ..... (Total 3 marks)

2. Make g the subject of the formula  $T = 2\pi \sqrt{\frac{l}{g}}$ 

 $g = \dots$  (Total 4 marks)

3. (a) Multiply out the brackets and simplify your answer (2x + 3)(2x - 5)

(2)

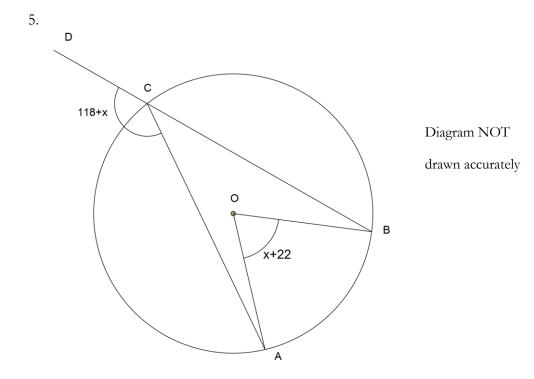
(b) Factorise fully  $3x^2 - 12$ 

(c) Simplify  $\frac{3x^2y \times 4xy^3}{6xy^5}$ 

(3)

(Total 7 marks)

- If 1 < a < 10, 1 < b ≤ 9 and ab > 10 then find, giving your answers in standard form, in terms of a and b;
  - (i)  $(a \times 10^{15}) \times (b \times 10^{16})$


(3)

(ii)  $(a \times 10^{15}) + (b \times 10^{16})$ 

.....

(3)

(Total 6 marks)



A, B and C are points on a circle, centre O. BCD is a straight line. Find the value of x.

*x* = .....

(Total 4 marks)

6. I roll three fair dice.

Calculate the probability that I throw

(i) A total score of 3

(ii) A total score of 6

(Total 6 marks)

. . . . . . . . . . .

7. (i) Factorise  $3x^2 + 5x - 2$ 

.....

(2)

(ii) Solve  $2x^2 - 3x - 4 = 0$ , giving your answers to 3 SF.

.....

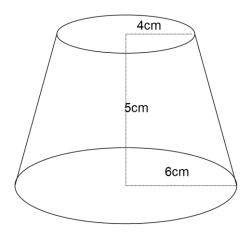
(3)

#### (iii) Simplify

$$\frac{\frac{1}{x}-2}{4-\frac{1}{x^2}}$$

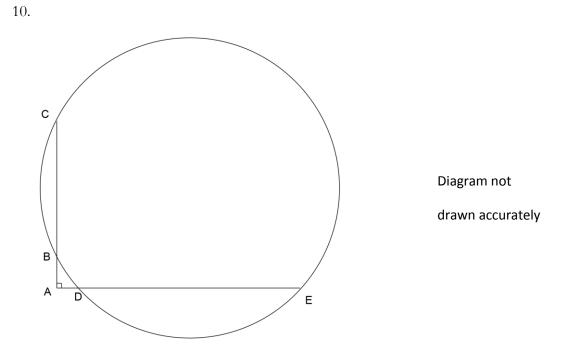
.....

(3)


(Total 8 marks)

8. (i) Write 
$$\frac{2}{2x-1} - \frac{1}{x+1}$$
 as a single algebraic fraction.

(3)


(ii) Hence solve 
$$\frac{2}{2x-1} - \frac{1}{x+1} = \frac{1}{5-x}$$
.

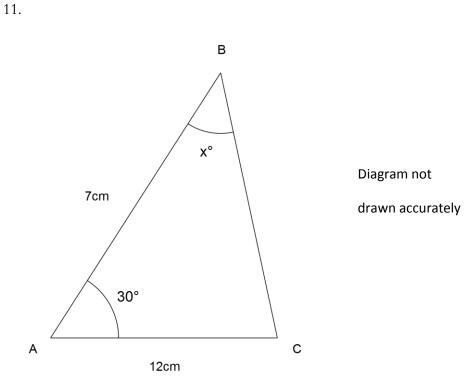
(4) (Total 7 marks)



The diagram shows a frustum of a cone, which is a cone with its top taken off. The base radius is 6cm, the top radius is 4cm and the height is 5cm. Find the volume of the frustum.

> ..... cm<sup>3</sup> (Total 5 marks)




The diagram shows a circle which passes through points B, C, E and D, and two straight lines ABC and ADE which intersect at right angles at A. AD=4cm, DE=40cm and BC=14cm.

(i) Find the radius of the circle.

 $r = \dots cm$  (3)

(ii) Hence, or otherwise, find the length AB.

*AB* =.....cm (2) (Total 5 marks)



The diagram shows the triangle ABC and the lengths of two of its sides in centimetres. Angle BAC=30°. Find the value of x.

 $x = \dots$ 

## Section B: Answer either Question 12 which starts below or Question 13 which is on page 15. Both are worth 20 marks

12. (a) The point A and B have coordinates (5,1) and (1,7) respectively. Find the equation of the perpendicular bisector of AB.

(3)

(b) (i)  $f(x) = x^3 + ax + 2$  has a factor (x + 2). Find the value of a.

(ii) Factorise f(x) fully and sketch a graph of y = f(x).

(4)

(c) Showing your working, find the value of *a* so that  $\frac{2+\sqrt{2}}{\sqrt{18}-4} = \sqrt{a} + \sqrt{a+1}$ 

(d)

(i) Express  $x^2 + x + 1$  in the form  $(x + b)^2 + c$ . Hence sketch the graph  $y = x^2 + x + 1$ .

(3)

(ii) For what value(s) of m is the line y = mx a tangent to the curve?

*m* =.....(4) (Total 20 marks) 13. A *proper factor* of an integer N is a positive integer, not 1 or N, that divides N.
(i) Show that 3<sup>2</sup> × 5<sup>3</sup> has exactly 10 proper factors. Determine how many other integers of the form 3<sup>m</sup> × 5<sup>n</sup> (where m and n are integers) have exactly 10 proper factors.

(ii) Let N be the smallest positive integer that has exactly 426 proper factors. Determine N, giving your answer in terms of its prime factors.

#### (Total 20 marks)

Use as much space on this and the next page for the working for question 13.

This page is blank and available to be used for working.

#### END OF PAPER